Název: Automated Bioacoustic Monitoring for South African Bird Species on Unlabeled Data
Automated Bioacoustic Monitoring for South African Bird Species on Unlabeled Data
Autoři: Doell, Michael
Kuehn, Dominik
Suessle, Vanessa
Burnett, Matthew J.
Downs, Colleen T.
Weinmann, Andreas
Hergenroether, Elke
Citace zdrojového dokumentu: WSCG 2024: full papers proceedings: 32. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 23-32.
Datum vydání: 2024
Nakladatel: Václav Skala - UNION Agency
Typ dokumentu: konferenční příspěvek
conferenceObject
URI: http://hdl.handle.net/11025/57381
ISSN: 2464–4625 (online)
2464–4617 (print)
Klíčová slova: bioakustické monitorování;druhová klasifikace;spektrogramy;konvoluční rekurentní neuronová síť;obousměrná GRU;ekologie;zachování divoké zvěře
Klíčová slova v dalším jazyce: bioacoustic monitoring;species classification;spectrograms;CNNs;convolutional recurrent neural network;bidirectional GRU;ecology;wildlife conservation
Abstrakt v dalším jazyce: Analyses for biodiversity monitoring based on passive acoustic monitoring (PAM) recordings is time-consuming and chal lenged by the presence of background noise in recordings. Existing models for sound event detection (SED) worked only on certain avian species and the development of further models required labeled data. The developed framework automatically extracted labeled data from available platforms for selected avian species. The labeled data were embedded into recordings, including environmental sounds and noise, and were used to train convolutional recurrent neural network (CRNN) models. The models were evaluated on unprocessed real world data recorded in urban KwaZulu-Natal habitats. The Adapted SED-CRNN model reached a F1 score of 0.73, demonstrating its efficiency under noisy, real-world conditions. The proposed approach to automatically extract labeled data for chosen avian species enables an easy adaption of PAM to other species and habitats for future conservation projects.
Práva: © Václav Skala - UNION Agency
Vyskytuje se v kolekcích:WSCG 2024: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
A17-2024.pdfPlný text5,94 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/57381

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.