Název: | Towards Multi-Species Animal Re-Identification Towards Multi-Species Animal Re-Identification |
Autoři: | Fruhner, Maik Tapken, Heiko |
Citace zdrojového dokumentu: | WSCG 2024: full papers proceedings: 32. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 137-146. |
Datum vydání: | 2024 |
Nakladatel: | Václav Skala - UNION Agency |
Typ dokumentu: | konferenční příspěvek conferenceObject |
URI: | http://hdl.handle.net/11025/57386 |
ISSN: | 2464–4625 (online) 2464–4617 (print) |
Klíčová slova: | reidentifikace;zvířata;hluboké učení;počítačové vidění |
Klíčová slova v dalším jazyce: | re-identification;animals;deep learning;computer vision |
Abstrakt v dalším jazyce: | Animal Re-Identification (ReID) is a computer vision task that aims to retrieve a query individual from a gallery of known identities across different camera perspectives. It is closely related to the well-researched topic of Person ReID, but offers a much broader spectrum of features due to the large number of animal species. This raises research questions regarding domain generalization from persons to animals and across multiple animal species. In this paper, we present research on the adaptation of popular deep learning-based person ReID algorithms to the animal domain as well as their ability to generalize across species. We introduce two novel datasets for animal ReID. The first one contains images of 376 different wild common toads. The second dataset consists of various species of zoo animals. Subsequently, we optimize various ReID models on these datasets, as well as on 20 datasets published by others, with the objective of evaluating the performance of the models in a non-person domain. Our findings indicate that the domain generalization capabilities of OSNet AIN extend beyond the person ReID task, despite its comparatively small size. This enables us to investigate real-time animal ReID on live video data. |
Práva: | © Václav Skala - UNION Agency |
Vyskytuje se v kolekcích: | WSCG 2024: Full Papers Proceedings |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
B37-2024.pdf | Plný text | 3,62 MB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/57386
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.