Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorZajíc, Zbyněk
dc.contributor.authorMachlica, Lukáš
dc.contributor.authorMüller, Luděk
dc.date.accessioned2015-12-10T09:58:30Z-
dc.date.available2015-12-10T09:58:30Z-
dc.date.issued2011
dc.identifier.isbn978-3-642-23537-5
dc.identifier.issn0302-9743
dc.identifier.urihttp://www.kky.zcu.cz/cs/publications/ZbynekZajic_2011_Initializationof
dc.identifier.urihttp://hdl.handle.net/11025/16951
dc.description.abstractfMLLR si v porovnání s jinými adaptačními metodami vystačí s malým počtem adaptačních dat. Nicméně extrémně malé množství může vyústit ve špatný odhat adaptační matice. Taková situace se předchází dodáním nějaké informace a-priory. V tomto článku diskutujeme možnost inicializace pomocí statistik od podobných řečníků.cs
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherSpringercs
dc.rights© Zbyněk Zajíc - Lukáš Machlica - Luděk Müllercs
dc.subjectfMLLRcs
dc.subjectadaptacecs
dc.subjectstatistikycs
dc.subjectrozpoznávání řečics
dc.subjectrobustnostcs
dc.subjectinitializacecs
dc.titleInitialization of fMLLR with sufficient statistics from similar speakersen
dc.title.alternativeInicializace fMLLR statistikami od podobných řečníkůcs
dc.typečlánekcs
dc.typearticleen
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translatedOne of the most utilized adaptation techniques is the feature Maximum Likelihood Linear Regression (fMLLR). In comparison with other adaptation methods the number of free parameters to be estimated significantly decreases. Thus, the method is well suited for situations with small amount of adaptation data. However, fMLLR still fails in situations with extremely small data sets. Such situations can be solved through proper initialization of fMLLR estimation adding some a-priori information. In this paper a novel approach is proposed solving the problem of fMLLR initialization involving statistics from speakers acoustically close to the speaker to be adapted. Proposed initialization suitably substitutes missing adaptation data with similar data from a training database, fMLLR estimation becomes well-conditioned, and the accuracy of the recognition system increases even in situations with extremely small data sets.en
dc.subject.translatedfMLLRen
dc.subject.translatedadaptationen
dc.subject.translatedstatisticsen
dc.subject.translatedspeech recognitionen
dc.subject.translatedrobustnessen
dc.subject.translatedinitializationen
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:Články / Articles (KKY)
Články / Articles (NTIS)

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
ZbynekZajic_2011_Initializationof.pdfPlný text222,99 kBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/16951

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.