Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorLengauer, Stefan
dc.contributor.authorHouska, Peter
dc.contributor.authorPreiner, Reinhold
dc.contributor.editorSkala, Václav
dc.date.accessioned2022-09-01T08:25:55Z
dc.date.available2022-09-01T08:25:55Z
dc.date.issued2022
dc.identifier.citationWSCG 2022: full papers proceedings: 30. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 38-47.en
dc.identifier.isbn978-80-86943-33-6
dc.identifier.issn2464-4617
dc.identifier.urihttp://hdl.handle.net/11025/49577
dc.format10 s.cs
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.rights© Václav Skala - UNION Agencyen
dc.subjectmračno bodůcs
dc.subjectkostra křivkycs
dc.subjectGaussova směscs
dc.subjectgeometrický výpočetcs
dc.titleEfficient Point Cloud Skeletonization with Locally Adaptive L1-Medial Projectionen
dc.typeconferenceObjecten
dc.rights.accessopenAccessen
dc.type.versionpublishedVersionen
dc.description.abstract-translated3D line skeletons are simplistic representations of a shape’s topology which are used for a wide variety of geometry-processing tasks, including shape recognition, retrieval, and reconstruction. Numerous methods have been proposed to generate a skeleton from a given 3D shape. While mesh-based methods can exploit existing knowledge about the shape’s topology and orientation, point-based techniques often resort to precomputed per- point normals to ensure robustness. In contrast, previously proposed techniques for unprocessed point clouds either exhibit inferior robustness or require expensive operations, which in turn increases computation time. In this paper, we present a new and highly efficient skeletonization approach for raw point cloud data, which produces overall competitive results compared to previous work, while exhibiting much lower computation times. Our algo- rithm performs robustly in the face of noisy and fragmented inputs, as they are usually obtained from real-world 3D scans. We achieve this by first transferring the input point cloud into a Gaussian mixture model (GMM), obtaining a more compact representation of the surface. Our method then iteratively projects a small subset of the points into local L1-medians, yielding a rough outline of the shape’s skeleton. Finally, we present a new branch detection technique to obtain a coherent line skeleton from those projected points. We demonstrate the capabilities of our proposed method by extracting the line skeletons of a diverse selection of input shapes and evaluating their visual appearance as well as the efficiency compared to alternative state-of-the-art methodsen
dc.subject.translatedpoint clouden
dc.subject.translatedcurve skeletonen
dc.subject.translatedGaussian mixtureen
dc.subject.translatedgeometric computationen
dc.identifier.doihttps://www.doi.org/10.24132/CSRN.3201.6
dc.type.statusPeer-revieweden
Vyskytuje se v kolekcích:WSCG 2022: Full Papers Proceedings

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
A59-full.pdfPlný text3,38 MBAdobe PDFZobrazit/otevřít


Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://hdl.handle.net/11025/49577

Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.