Full metadata record
DC pole | Hodnota | Jazyk |
---|---|---|
dc.contributor.author | Machlica, Lukáš | |
dc.contributor.author | Vaněk, Jan | |
dc.contributor.author | Zajíc, Zbyněk | |
dc.date.accessioned | 2015-12-17T09:32:11Z | - |
dc.date.available | 2015-12-17T09:32:11Z | - |
dc.date.issued | 2011 | |
dc.identifier.citation | MACHLICA, Lukáš; VANĚK, Jan; ZAJÍC, Zbyněk. Fast estimation of gaussian mixture model parameters on GPU using CUDA. In: The 12th International Conference on Parallel and Distributed Computing, Applications and Technologies: 20-22 October 2011, Gwangju, Jižní Korea. Gwangju: IEEE Press, 2011, p. 167-172. ISBN 978-0-7695-4564-6. | en |
dc.identifier.isbn | 978-0-7695-4564-6 | |
dc.identifier.uri | http://www.kky.zcu.cz/cs/publications/LukasMachlica_2011_FastEstimationof | |
dc.identifier.uri | http://hdl.handle.net/11025/17041 | |
dc.format | 6 s. | cs |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en |
dc.publisher | IEEE Press | en |
dc.rights | © Lukáš Machlica - Jan Vaněk - Zbyněk Zajíc | cs |
dc.subject | CUDA | cs |
dc.subject | SSE | cs |
dc.subject | GMM | cs |
dc.subject | GMM | cs |
dc.subject | EM | cs |
dc.subject | paralelní implementace | cs |
dc.title | Fast estimation of gaussian mixture model parameters on GPU using CUDA | en |
dc.title.alternative | Rychlá estimace parametrů model Gaussovských směsí za využití GPU a architektury CUDA | cs |
dc.type | článek | cs |
dc.type | article | en |
dc.rights.access | openAccess | en |
dc.type.version | publishedVersion | en |
dc.description.abstract-translated | Gaussian Mixture Model (GMM) statistics are required for maximum likelihood training as well as for adaptation techniques. In order to train/adapt a reliable model a lot of data are needed, what makes the estimation process time consuming. The paper presents an efficient implementation of estimation of GMM statistics on GPU using NVIDIA's Compute Unified Device Architecture (CUDA). Also an augmentation of the standard CPU version is proposed utilizing SSE instructions. Time consumptions of presented methods are tested on a large dataset of real speech data from the NIST Speaker Recognition Evaluation 2008. Estimation on GPU proves to be 100 times faster than the standard CPU version and 30 times faster than the SSE version assuming more than 256 mixtures, thus a huge speed-up was achieved without any approximations made in the estimation formulas. Proposed implementation was also compared to other implementations developed by other departments over the world and proved to be the fastest. | en |
dc.subject.translated | CUDA | en |
dc.subject.translated | SSE | en |
dc.subject.translated | GMM | en |
dc.subject.translated | GMM | en |
dc.subject.translated | EM | en |
dc.subject.translated | parallel implementation | en |
dc.identifier.doi | 10.1109/PDCAT.2011.40 | |
dc.type.status | Peer-reviewed | en |
Vyskytuje se v kolekcích: | Články / Articles (KIV) Články / Articles (KKY) Články / Articles (NTIS) |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
LukasMachlica_2011_FastEstimationof.pdf | Plný text | 267,97 kB | Adobe PDF | Zobrazit/otevřít |
Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://hdl.handle.net/11025/17041
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.